
DIAG2GRAPH: REPRESENTING DEEP LEARNING DIAGRAMS IN RESEARCH PAPERS AS
KNOWLEDGE GRAPHS

Aditi Roy, Ioannis Akrotirianakis, Amar V. Kannan, Dmitriy Fradkin
Arquimedes Canedo, Kaushik Koneripalli, Tugba Kulahcioglu

Siemens Corporate Technology, 755 College Road East, Princeton, NJ 08540

ABSTRACT

‘Which are the segmentation algorithms proposed during
2018-2019 in CVPR that have CNN architecture?’ An-
swering this question involves identifying and analyzing the
deep learning architecture diagrams from several research
papers. Retrieving such information poses significant chal-
lenge as most of the existing academic search engines are
primarily based on only the text content. In this paper, we
introduce Diag2Graph, an end-to-end framework for parsing
deep learning diagram-figures, that enables powerful search
and retrieval of architectural details in research papers. Our
proposed approach automatically localizes figures from re-
search papers, classifies them, and analyses the content of
the diagram-figures. The key steps in analyzing the figure
content is the extraction of the different components data and
finding their structural relation. Finally, the extracted com-
ponents and their relations are represented in the form of a
deep knowledge graph. A thorough evaluation on a real-word
annotated dataset has been done to demonstrate the efficacy
of our approach.

Index Terms— Diagram parsing, knowledge graph, deep
learning, curator, similarity analysis

1. INTRODUCTION

In the last decade, a whopping 1,710,000 research papers have
been published in this area of Deep Learning (DL)1. Manag-
ing this large growth of DL publications has been a challenge
for the researchers during validation, approval and dissemi-
nation DL related scientific information. Existing academic
search engines like Google Scholar, arxiv, NOA [1] are in-
herently limited by their data mining and indexing approach
which is restricted to only the text content of the papers.

Given that scientific advancements require conceptual-
ization, explanations and reproducible implementations, it is
important to have a uniform representation that holistically
represents a scientific publication as a machine curatable

This work was supported by DARPA grant HR00111990010.
1https://scholar.google.co.in/scholar?hl=en&as_

sdt=1%2C5&as_ylo=2010&as_yhi=2019&as_vis=1&q=deep+
learning&btnG=

Fig. 1: Architecture of Diag2Graph to extract and represent
DL diagrams in a research paper using knowledge graph.

model for easy dissemination of scientific facts. To ad-
dress this unique requirement, we propose to create a Deep
Knowledge Graph (DKG) repository for papers related to DL
algorithms and methods to help improve search and retrieval
of relevant information in the academic domain. A RDF
knowledge graph (KG) [2] encodes semantic information
as uniquely identifiable entities and relationships between
them in the form of a Subject-Predicate-Object (SPO) triple.
Common machine queryable representation like KG of each
scientific paper will allow scientists and engineers to explore
the vast knowledge that resides in these papers and identify
atomic scientific facts. Taking inspiration from large-scale
social KGs such as YAGO4 [3] and DBPedia5 [4] that sup-
ports various general knowledge-related queries, we develop
DKG for the first time to the best of our knowledge.

To achieve our goal, we propose a novel framework that
automatically parses a research paper to extract DL architec-
ture related information. It has been observed that most of the
research papers explain the DL model through a figure. So,
in this paper we focus on representing the DL diagram fig-
ure through a DKG. Our novel end-to-end framework named
Diag2Graph (see figure 1) automatically localizes all figures
from a research paper, classifies them, and extracts the con-
tent of the DL diagram figures. Our proposed approach can
localize a variety of figures and sub-figures, classify them by
leveraging deep neural nets. As part of this work, we also
introduce thorough evaluation metrics, along with a fully-
annotated real-world dataset to demonstrate the efficacy of
our parsing approach. Finally, to demonstrate the potential
unleashed by our approach, we present a Graph AutoEncoder
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(GAE) based KG embedding method that allows users to find
papers with similar diagrams in terms of type, area and many
othres. Thus, the key contributions are: (i) introduce and
study the problem of DL diagram figure parsing, (ii) pro-
pose a pipeline that automatically localizes figures, classifies
them, analyzes their content and represents it through a deep
knowledge graph, (iii) present a thorough evaluation on a real-
word dataset to demonstrate the efficacy of our approach, (iv)
demonstrate the utility of DKG.

2. DIAGRAM PARSING: DIAG2GRAPH

Document analysis community has devoted much attention
towards analyzing the document text content compared to
figure content [5, 6]. Although scholarly figures are more
structured than natural images, analysis of figures exposes a
plethora of complex vision challenges due to strict require-
ments, high variation, heavy clutter and deformation in a
figure [7]. Moreover, unlike natural image recognition tasks
where desired amount of labeled training data is obtainable,
figure parsing has additional challenge due to presence of
only one exemplar (i.e., the legend symbol) for model learn-
ing. Although diagram recognition is a well-studied problem
[8], most of the works perform analysis on flowcharts, UML
diagrams, finite automata [9, 10], which follow predefined
structure. Unlike these diagrams, DL architecture figures do
not follow any specific structure and formatting, thus making
the analysis very challenging. Our Diag2Graph framework
consists of four major steps, as shown in Figure 1: (i) ex-
tracting all the figures from a research paper, (ii) segregating
the figures showing DL diagram, (iii) performing content
extraction from diagram, (iv) constructing DKG.

2.1. Figure Extraction from Research Paper

It is a challenging task to extract a figure as a whole as the
vector images are generally embedded in the PDF document
and a large figure may have multiple sub-figures. Extensive
research has been done on extraction of visual figures from
a PDF document [11, 12] by processing the PDF primitives.
The work of [13] is interesting as it extracts a wide variety of
figures along with their captions. In this paper, we build upon
this work. To handle the limitation of extracting sub-figures
from a figure in [13], we apply axis-aligned splits [7].

2.2. Figure Classification

The figures in DL research papers could be of different types,
like, DL architecture diagrams, natural images, result figures,
plots, etc. So, the first step is to segregate the DL diagrams
from all the other figures extracted from a research paper.
Classifying scholarly figures has recently become an area of
research interest [14]. In this paper, we leverage the recent
success of CNNs and present a binary neural network clas-
sifier trained on deep features extracted from fully connected

layer of pre-trained CNN model. We evaluate two network ar-
chitectures: VGG19 [15] and Resnet-50 [16], both pre-trained
on 1.2 million images from ImageNet [17] and then fine-tuned
for our figure classification task.

As the DL diagrams show extreme variations and typi-
cally do not follow any definition, it is difficult to parse them
all using the same image processing framework without tak-
ing into account their variations. The taxonomy suggested in
[18] is followed to train a multi-class classifier as described
before to identify relevant diagrams. Among the five cate-
gories, 2D-Box plot is found to be the most popular and fre-
quent one, thus considered for further analysis.

2.3. Content Extraction from DL Diagram

Given all the segregated DL diagrams, we next analyze their
content to obtain their corresponding detailed structured rep-
resentation. This involves detecting the nodes, edges connect-
ing the nodes, and the text describing different nodes or edges.

Node Detection: After image quality enhancement with
application of image pre-processing techniques, thresholding
is employed to binarize the image, followed by image con-
tour detection. However, as the diagram images often con-
tain overlapping components, application of traditional con-
tour detection technique on the binary images may not extract
all individual nodes. We apply iterative region growing tech-
nique (which is especially useful when detecting overlapping
nodes) to identify closed contours of the nodes. The con-
tours extracted from these two techniques may have multiple
bounding box detection corresponding to the same node. So,
non-max suppression is applied to filter out weak bounding
boxes based on their solidity indices.

Text Detection: The text description in a diagram image
is obtained by applying EAST text detector [19] followed by
OCR [20] on the extracted text regions. However, DL archi-
tecture diagrams contain specific words or acronyms which
may not be available in general dictionary. Thus, of-the-shelf
OCR performs poorly. To improve performance, we created
a DL dictionary with possible words/acronyms found in DL
diagrams from the training dataset.

Arrow Detection: Node connections in terms of arrows
in DL diagram give important information about the flow of
the entire DL model design. To detect the arrows, all the de-
tected nodes and the text regions are masked out from a figure.
Next, Hough line detection algorithm is applied to detect the
arrow lines. The direction of the arrow is obtained by ana-
lyzing the pixel distribution of the contour corresponding to a
detected arrow line. Figure 2 shows one example image after
extraction of all the nodes, texts and arrows.

2.4. Structural Analysis for Graph Generation

Structural analysis is performed to find spatial and logical
relations among the nodes, text, and arrow candidates to
generate the final representation in terms of DKG. General
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Fig. 2: All the nodes extracted from an example DL diagram
are shown here. The node numbers are colored in red. The
text description associated with a node is depicted with pink
color within the node. The text box in yellow color shows text
description not tagged with any specific node. The connectiv-
ity among nodes are shown in green color.

Fig. 3: Graph extracted from Figure 2.

flowchart representing a workflow or process or algorithm
follows strict structural grammar [8]. Existing flow diagram
analysis methods [8, 10] utilize this structure grammar to
perform structural analysis on traditional flow charts. As DL
diagrams do not strictly follow such structures, e.g. each two
node may not necessarily be connected with an arrow, it is
not possible to apply existing flow diagram analysis method-
ologies [21, 9, 22, 23, 24] to decode a DL diagram. Instead,
we employ DL specific structure grammar as described next
to perform flow detection.

The node, text and arrow contours are first sorted based on
the location and direction. The nodes generally contains some
DL layer description. According to [18], a layer description is
generally provided within a detected block or in its vicinity.
So, each text box is tagged with the nearest neighbor node
according to a pre-defined threshold. Then, based on the text
description, the type of the node is identified. However, if the
nearest neighbor node is beyond the pre-defined threshold, the
text is not tagged with any node and kept as an independent
text component. In such cases, it has been observed that the
text generally serves as image title or image section title [25].

Next, the start and end points of the arrows are analyzed
to detect connectivity between two nodes/layers. We cre-
ate a grammar defining a list of possible next layers for a
given current layer. The arrow directions along with possible
valid next node/layer information is used to identify valid
flow. This grammar also helps to find the flow among a set
of nodes put in vertical or horizontal order without using
any arrow. After detecting DL design flow, a deep knowl-
edge graph is created with following relationships describ-

ing a diagram: (i)“found in” (〈FigureID-found in-paper
title〉), (ii) “has caption” (〈FigureID-has caption-figure
caption〉), (iii) “isA” (〈ComponentID/TextID-isA-layer
name〉), (iv) “has description” (〈ComponentID/TextID-
has description-layer properties〉), (v) “followed by”:
〈ComponentID/TextID-followed by-ComponentID/TextID〉,
(vi) “has flow”: 〈FigureID-has flow-flow direction〉).

Figure 3 shows the diagram graph constructed from Fig-
ure 2. This representation is the foundation of the RDF [2]
DKG creation, known as the standard for representing con-
nected semantic content. These knowledge graphs are stored
in triple stores and the information is queried from them using
triple pattern queries.

3. RESULTS
3.1. Dataset

We downloaded 1750 papers from arXiv.org papers cover-
ing five different research areas (CVPR, ICML, ECCV, ICCV,
NIPS) using “deep learning” as the input query. 14,351 fig-
ures were extracted from these papers using [13] with 94%
precision at 90% recall. Out of the these figures, 4488 figures
were identified to portray DL design flow and the remaining
9863 figures were other type of figures. Of all the figures
annotated as 2D-box, we randomly sampled over 150 figures
for further detailed annotations, i.e., nodes, arrows, text, rela-
tions, etc. Annotating the figures yielded 1272 nodes, 2183
arrows, 5555 test boxes and 5555 relations. A substantial
fraction of the object annotations has overlapping bounding
boxes and complex connectivity/relationships. The dataset
contains an average of 67 relationships per image.

Figure Type Classification Accuracy: Labeled image
set is split into training, validation, and test set with 8:1:1
ratio to train the deep neural network classifiers. Accuracy of
the classifiers is reported in Table 1. It can be observed that
the DL diagrams can be identified with 95% accuracy on the
test dataset which is better than the 86% accuracy [18]. Fur-
ther, on highly varying DL flow design images, multi-class
classifier obtained F1 score more than 70%.

Table 1: Performance of figure type classifiers.
Type Approach Precision Recall F1-

score
Accuracy

Binary VGG19 0.86 0.86 0.86 0.94
Classifier Resnet 0.86 0.86 0.86 0.95
Multi-cls VGG19 0.85 0.62 0.70 0.62
Classifier Resnet 0.87 0.66 0.71 0.66

Content Extraction Accuracy: Evaluating figure anal-
ysis results is a challenging endeavor as it demands detailed
annotation of the figures within research papers. Therefore,
most previous works have restricted their evaluation to man-
ual inspection [26, 27]. The availability of our detailed anno-
tated dataset allows thorough analyses of the various compo-
nents of our approach. Node detection accuracy is measured
by using the standard bounding box overlap-criteria from
object detection [28]. More specifically, we regard a pre-
dicted bounding box BBp for the node box to be correct if its
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intersection-over-union (IoU) with the ground-truth box BBg

is above 0.5, i.e.,
BBp ∩BBg

BBp ∪BBg
> 0.5. Under this metric, we

obtained an accuracy of 69.44%. Qualitative analysis of the
results reveal that the node detection module was not perform-
ing well if the components are having irregular/fuzzy/dotted
border, color-filled box with color transition within the box.
Text detection accuracy is measured independently based
on the text box position detection, text identification mod-
ules. Text box position detection accuracy was found to be
62.84% using the IoU criteria. It was observed that the text
detection module may not work well in challenging cases of
low-resolution text, equations or symbols. Text identification
accuracy without DL dictionary was found to be 51.6%. The
accuracy improved to 72.4% after use of DL dictionary.

Graph Construction: While the above evaluations re-
veal the component-level performance, we also evaluated
our overall figure analysis performance in terms of relation-
ship detection. The accuracy metric measures the fraction of
ground-truth relationship triplets (subject-predicate-object)
that appear among the top 1 most confident triplet predictions
in an image. The choice of this metric is, as explained in
[29], due to the sparsity of the relationship annotations in
our dataset-metrics like mAP would falsely penalize posi-
tive predictions on unlabeled relationships. Accuracy of our
model for diagram-to-graph generation task was found to be
59.86%. Note that several components need to be sequen-
tially accurate for the entire parsing to be considered correct.
A substantial fraction of missed detection originates from
lower accuracy of connectivity detection module and text
detection module. For example, if the arrow heads are not
detected properly, the “followed by” relationship will not be
detected accurately. Similarly, if the text parsing module does
not generate correct output, “isA” predicate shows wrong re-
sults. Our approach does an impressive job despite the high
structural variations in the figure as well as the presence of
heavy clutter in the diagram figure.

3.2. Applications: Novelty Detection

The DKG created by the proposed Diag2Graph pipeline en-
ables a variety of exciting applications, like DL architecture
question answering, novelty detection, information retrieval
and recommendation systems. Here we demonstrate how the
DKG can be used for novelty detection by extracting the in-
formation into an intermediate form that can capture the high-
level semantics from DL publications. To do this, we repre-
sent the DKG using low-dimensional latent vectors that cap-
tures the semantic properties of a DKG by representing it with
its features distributed across multiple vector components.

We leverage Graph AutoEncoder (GAE) [30] to embed
the KG nodes to a lower dimensional space in such a way
that certain proximity measures are preserved. We introduce a
super-node for each subgraph DKG that is connected to all the
nodes in that subgraph and serve as subgraph representative.

Fig. 4: DKG embeddings from images of 143 papers. The
colors indicate: (a) area of research, (b) type of DL network.

Thus, when embedding is done, the super-node embedding
can be seen as a summary of the subgraph. Once the learn-
ing process is complete, the embedding space can be used as
feature inputs to perform various machine learning tasks, like
predicting the group that a node belongs to.

We construct graphs for 213 DL architecture images from
143 papers comprising of 4,252 nodes with 393 features per
node and 16,098 edges/relations between them. For the visu-
alization purpose, we take the embedding of the super-nodes
and apply TSNE [31] to generate the images shown in Figure
4. It can be observed from Figure 4(a) that all Recurrent Neu-
ral Network (RNN) diagrams (orange color in top right cor-
ner) are clustered together showing their architectural similar-
ity. Proximity of CNN RNN type diagrams (brown color)
to the RNN cluster reveals their resemblance to RNN type ar-
chitecture. On the other hand, Figure 4(b) reflects diagram
similarity in terms of research area. High similarity score be-
tween two papers in terms of research area as well as diagrams
type calculated from the features embedding indicates proba-
bility of limited novelty that needs further close investigation.

4. CONCLUSIONS

In this paper, we introduced Diag2Graph, an end-to-end
framework for parsing deep learning diagram figure in a re-
search paper and representing it as a knowledge graph. This
is the first work to the best of our knowledge that represents
diagrams as knowledge graphs to enable rich indexing and
search of DL architecture content in future. Our experimental
analysis has confirmed that figure parsing in scholarly big
data is a challenging vision application. The Diag2Graph
generator currently suffers from successfully parsing the
diagram in presence of heavy clutter showing complex over-
lapping node connections. Techniques from vascular tracking
[32] could be applicable here. Legend parsing to interpret
color codes in arrows and nodes is currently not supported.
Finally, our DL diagram analysis approach models and trains
the different components (nodes, arrows, and text-data) inde-
pendently. Jointly modeling all the components and training
them together within an end-to-end deep network is an excit-
ing endeavor. While our current framework is generalizable
for parsing a variety of flow diagram-figures, it has only
scratched the surface with interesting open challenges ahead.
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